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MATERIALS & METHODS

Gene Knockout
• CACT knockout mice were compared to wild-type 

C57BL/6J controls.

Fatty Liver Diet Regimen

Mice were divided into four groups:
• Control genotype / control diet (Control) (n=5)

• Control genotype / fatty liver diet (Control FLD) (n=4)

• CACT knockout / control diet (CactLiv-/-) (n=4)

• CACT knockout / fatty liver diet (CactLiv-/-) (n=5)

Control diet: standard chow (10 kcal% fat)

Fatty liver diet: high-fat (60kcal% fat) for 7 

days

Liver weight measured post-diet

RT-PCR Analysis

• Quantitative real-time PCR with SYBR Green 

on QuantStudio 6 Flex

• Primers for mitochondrial biosynthesis, 

gluconeogenesis, fatty acid oxidation, 

ketogenesis, triacylglycerol synthesis

• B2M as housekeeping gene

• Samples run in duplicate with melt curve 

analysis for specificity

Data Analysis

Relative gene expression: 2^-ΔΔCt method

Statistical analysis: GraphPad Prism, p < 0.05 

considered significant

Liver weight:

• Increased in CactLiv-/- FLD group

Gene expression changes:

CactLiv-/- mice:

• ↑ Gluconeogenesis, 

mitochondrial/peroxisomal fatty acid 

oxidation, carnitine synthesis, 

ketogenesis

CactLiv-/- FLD mice:

• ↑ Pparg (lipogenesis)

• ↓ Gluconeogenesis, carnitine synthesis, 

most mitochondrial fatty acid oxidation 

genes (except cpt1a)

Control FLD mice:

• ↑ Mitochondrial fatty acid oxidation, 

ketogenesis, systemic metabolism, 

peroxisomal fatty acid oxidation

• Compared to Control, CactLiv-/- mice 

show upregulation of pcx(p=0.030), 

and fbp1 (p=0.021). Yet, when 

compared to CactLiv-/- mice, CactLiv-

/- FLD mice show downregulation of 

G6pc (p-value=0.002) and Fbp1 (p-

value=0.0004).

These findings suggest that mitochondrial fatty acid 

oxidation is crucial in protecting against FLD. CACT 

knockout impairs the liver's adaptive response to a high-fat 

diet, and alternative fatty acid oxidation pathways may be 

activated as compensatory mechanisms. Further research is 

needed to explore potential therapeutic targets based on 

these findings

Next Steps:

• Conduct a more comprehensive analysis of gene 

expression changes, possibly using RNA sequencing to 

identify additional pathways involved in the 

compensatory response to CACT knockout.

• Perform metabolomic studies to better understand the 

alterations in lipid metabolism and identify potential 

biomarkers.

• Investigate the effects of pharmacological interventions 

that target the upregulated pathways identified in this 

study, such as peroxisomal fatty acid oxidation, in 

CACT knockout mice.
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HYPOTHESIS

Fatty liver disease (FLD), often 

caused by high-fat diets, is a major 

health concern. This study 

investigates:

• The role of fatty acid oxidative 

metabolism in FLD

• Potential of other fatty acid 

metabolism pathways as 

therapeutic targets for FLD

We hypothesize that mitochondrial 

fatty acid oxidation is crucial in FLD 

pathogenesis. Knocking out the 

CACT gene in mice will result in more 

severe FLD progression on a high-fat 

diet compared to controls, with 

consistent molecular markers of 

mitochondrial and peroxisomal 

dysfunction.

• CactLiv-/- mice exhibit increased 

abundance of Crot (p=0.032) and 

acox1 (p=0.034) compared to 

Control. Crot is also seen in higher 

abundance in Control mice fed fatty 

liver inducing diet when compared to 

control diet (p=0.008).

• Bbox1 (p=0.05) is seen in higher 

abundance in CactLiv-/- mice vs. 

Control. Yet, there is a significant 

decrease in abundance in Bbox1 

(p=0.009) and Tmlhe (p=0.011) in 

CactLiv-/- mice fed a fatty liver 

inducing diet, compared to CactLiv-/- 

on a control diet.

• Gene Analysis shows that there is 

significant absence of Cact in 

knockout mice in Control vs CactLiv-

/- mice under control diet 

(p=0.00006) and FLD diet 

(p=0.0002). There is also a 

significant increase in Cact (p=0.02) 

in Control mice fed the FLD diet 

compared to those on control diet.

• Acadl (p=0.012), Cpt2 (p=0.054), and 

Acadm (p=0.018) present with 

increased abundance compared to 

control. Control shows moderate 

increase in expression of cpt2 (0.007) 

under FLD diet. CactLiv-/- shows 

considerable upregulation of cpt1a 

(p=0.051) and moderate decrease in 

acadvl (p=0.046).

• CactLiv-/- samples exhibit an increase 

of abundance for Scl16a1 (p=0.003), 

and bdh1 (p=0.020) when compared 

to Control. Slc16a1 also increased in 

Control FLD (p=0.018).

• Pparg (p=0.015) and Dgat2 

(p=0.006) are seen with increased 

abundance in CactLiv-/- mice. Pparg 

abundance is also seen to be greater in 

CactLiv-/- FLD mice than Control FLD 

mice.
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Fig. 1: Percentage Liver of Mouse Total Body Weight (BW)
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Fig. 8: Knockout
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Fig. 7: Carnitine Synthesis
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Fig. 6: Peroxisomal FAO
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Fig. 5: Triglyceride synthesis
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Fig. 4: Ketogenesis
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Fig. 3: Mitochondrial FAO
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Fig. 2: Gluconeogenesis
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