

Al-powered automatic contouring shows promise in improving radiotherapy planning for breast cancer, enhancing efficiency and accuracy.

- Accurate contouring of the Clinical Target Volume in breast cancer treatment.
- time-consuming and prone to variability.
- We explore the use of a Convolutional Neural Network (CNN)-based segmentation method for automatic CTV contouring in SAVI® **consistency** in radiotherapy planning.

- **CNN Architecture:** U-NET, a widely used CNN for medical image segmentation

AI-Powered Precision: Revolutionizing CTV Contouring for SAVI® Brachytherapy in Breast Cancer

Minh Nguyen, BS, MSc¹ and Jae Jung, PhD² Brody School of Medicine¹, East Carolina University, Department of Radiation Oncology²

Figure 4: Green: CTV; Pink: AI CTV. A: CTV contours for left breast with highest DSC of 91.4 using combined data set. **B:** For left breast with DSC of 89.9 using left breast data. **C**: For left breast with **lowest** DSC of 69.3 using left breast data. **D**: For right breast with DSC of 82.4 using right breast data.

DISCUSSION

Best Performance: Achieved when training data was split by breast side, **left** > right breast With 50 epochs, training took <7 hours Predictions can potentially improve with more

> Figure 5: Loss vs. epoch graph of U-NET training of data set with both left and right breast

Limitations: Unclear cause for difference in # of false positives due to **poor interpretability** and

Significant barrier for adoption of AI in clinical

Variability in contouring practices among radiation oncologists \rightarrow challenge in obtaining ground truth for AI training

CONCLUSION

Promising application of AI in streamlining and enhancing the radiotherapy planning process for SAVI® brachytherapy in breast cancer patients. Al

Improve consistency and accuracy

Assist physicians by capturing errors and

REFERENCES

[1] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer,

ACKNOWLEDGEMENT

Special thanks to the medical physics faculty at ECU Department of Radiation Oncology for their upmost support, expertise, and guidance.