Introduction

Understanding 4-AP’s Capabilities to Enhance Axonal & Glial Spinal Cord Regeneration After Injury Utilizing a Zebrafish Model

Natalie Clark & Dr. Karen Mruk

What does the Zebrafish (Danio rerio) model look like?

![Image](https://example.com/image1)

- More than 15 million individuals worldwide are affected by spinal cord injuries.1
- Individuals with a complete spinal cord injury have an lesion to their sensory and motor tracks.
- An protective barrier to extending tissue damage but an obstacle to regeneration of the spinal cord is the formation of a glial scar.2

Methods

1. Understanding Glial and Axonal Bridging After Spinal Cord Injury
2. Effects of Low Dose 4-Aminopyridine on Glial and Axonal Bridging After Spinal Cord Injury

Aim 1: Understanding Glial and Axonal Bridging After Spinal Cord Injury

- SCI Fish 0dpi
- SCI Fish 4dpi

Aim 2: Effects of Low Dose 4-Aminopyridine on Glial and Axonal Bridging After Spinal Cord Injury

- Control (Glial Bridge)
- DMSO SCI
- 4-AP SCI

Results

- Control (Axonal Bridge)
- DMSO SCI
- 4-AP SCI

Discussion

- 4-AP treated zebrafish showed axonal bridging by 2 days post injury compared to DMSO zebrafish.
- Fewer 4-AP zebrafish experienced glial bridging during recovery.
- Overall survival for the DMSO transected zebrafish was 20% and 4-AP transected was 37.5%.

Future Directions

- Aim 1: A current pilot study includes examining drug toxicity of 4-AP in the zebrafish.
- Aim 2: A proposed future study will look at various dosing schedules of 4-AP.
- Aim 3: An investigation into 4-AP’s ability to enhance locomotive recovery earlier over the course of 7 days will be studied.

Acknowledgements & References

Special thanks to The Mruk Lab for training and mentorship. Patrick Garrett for schematics, Thomas Rynes for excellent zebrafish care, and Grant # R03-NS107018.

![QR Code](https://example.com/qr-code)