Understanding the Components of Multiple-Choice Question Writing within the “Higher-Order” Thinking / Bloom's Taxonomy Rubric and Writing Better Questions: A Preliminary Report

- Joseph Nenow, BS, M4, Brody School of Medicine
- Arthur Samia, BS, M4, Brody School of Medicine
- Peter Kragel, MD, Department of Pathology and Laboratory Medicine (Retired)
- Philip Boyer, MD, PhD, Brody School of Medicine, Department of Pathology and Laboratory Medicine
Objectives

1. Discuss Bloom’s Taxonomy in Graduate Medical Education
 1. Initial Purpose in education
 2. Use within the context of multiple-choice questions
 3. Previous successes and challenges in the Boyer lab

2. Illustrate the use of Bloom’s Taxonomy in developing high-level multiple-choice questions (MCQs)
 1. Applications in question construction
 2. Applications in previous assessment analysis
Bloom’s Taxonomy

- Developed in 1956 by Benjamin Bloom and colleagues to help in the development of educational objectives.
- Revised in 2001 to reflect the actions that learners undertake when using each level of the pyramid.
- Originally intentioned for learning and later adopted for assessment and development of multiple-choice questions.

Assessment: Formative vs. Summative

Formative
- Low- or No-Stakes / Point Value
- Forms part of the instructional process. It helps teachers modify teaching methods and future lessons based on needs, to improve lessons.
- Examples:
 - Turning Point Questions
 - Review Questions
 - Quizzes

Summative
- High-Stakes / Point Value
- Determines what students know at a particular point in time / end of learning segment. Improves overall school performance.
- Examples:
 - Course Examinations
 - NBME Shelf Examinations
 - Step 1, 2 (CK), 3

Both
- Are ways to assess pupils
- Must evaluate pupils effectively
- Are used for student feedback
- Assist in future lesson planning
Multiple-choice questions are a standard mechanism of assessment in medical education

- Machine graded
- Optimize over time and use from year-to-year

In previous generations, “fact-based” questions were commonly deployed.

The urgency for faculty to develop assessment question writing knowledge and skills which allow for the incorporation of “higher-order” thinking as an element of questions is underscored by the extensive use of such questions within United States Medical Licensing Examination (USMLE) Step examinations.
University of Michigan faculty found potential for adoption of Bloom’s taxonomy to create a subject-specific scoring tool for histology multiple-choice questions.

- Emphasis on previously established Bloom’s Taxonomy levels as well as revised key skills
- Addition of Characteristics of MCQ format and types of domain-specific information

Bloom’s Taxonomy in MCQs: Histology Tool

Higher-Order Questions

<table>
<thead>
<tr>
<th>Bloom’s Taxonomy</th>
<th>Histology Tool Score:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key skills assessed:</td>
<td>Recall</td>
<td>Explain, identify</td>
<td>Apply, connect</td>
<td>Analyze, classify</td>
<td>Predict, judge, critique, decide</td>
<td></td>
</tr>
<tr>
<td>Types of histological information assessed:</td>
<td>Basic definitions, facts, and terms.</td>
<td>Basic understanding of architectural organization of histological features and concepts (connective tissue, muscle tissue, neural tissue, etc.). Interpretation and organization of organs or cell types from novel images confined to single cell type/structure.</td>
<td>Visual identification in new situations by applying acquired knowledge. Additional functional or structural knowledge about the cell/tissue is also required.</td>
<td>Visual identification and analysis of comprehensive additional knowledge. Connection between structure and function confined to single cell type/structure.</td>
<td>Interactions between different cell types/tissues to predict relationships; judge and critique knowledge of multiple cell types/tissues at same time in new situations. Potential to use clinical judgment to make decisions.</td>
<td></td>
</tr>
<tr>
<td>Characteristics of multiple-choice questions:</td>
<td>Only requires recall. Students may memorize answer without understanding the process. Knowing the “what,” but not understanding the “why.”</td>
<td>Requires recall and comprehension of facts. Image questions asking to identify a structure/cell type without requiring a full understanding of the relationship of all parts. The process of identification requires student to evaluate internal or external contextual clues without requiring knowledge of functional aspects.</td>
<td>Two-step questions that require image-based identification as well as the application of knowledge (e.g., identify structure and know function/purpose).</td>
<td>Students must call upon multiple independent facts and properly join them together. May be required to correctly analyze accuracy of multiple statements in order to elucidate the correct answer (e.g., generally answer choices with “I” & “II” or “I” & “II & III”). Also evaluate all options/understand all steps and can’t rely on simple recall.</td>
<td>Use information in a new context with the possibility for a clinical judgment. Students are required to go through multiple steps and apply those connections to a situation, e.g., predicting an outcome or diagnosis or critiquing a suggested plan.</td>
<td></td>
</tr>
<tr>
<td>Equivalent level of Bloom’s taxonomy:</td>
<td>Knowledge</td>
<td>Comprehension</td>
<td>Application</td>
<td>Analysis</td>
<td>Synthesis/Evaluate</td>
<td></td>
</tr>
</tbody>
</table>

Bloom’s Taxonomy Pathology Tool (BTPT)

- Adoption of Bloom’s Taxonomy of graduate level pathology class
- Similarities to BTHT
 - 5 Levels reflecting combination of Bloom’s Taxonomy
 - Relevant Domain-specific information as well as characteristics of the relevant MCQs
- Differences
 - theoretical challenge of developing types of pathological knowledge assessed

Higher-Order Questions

<table>
<thead>
<tr>
<th>Score</th>
<th>Bloom’s Skills Assessed</th>
<th>Type of Information</th>
<th>Multiple Choice Question Characteristics</th>
<th>Focus of Question</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
<th>Score 4</th>
<th>Score 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Knowledge</td>
<td>Comprehension</td>
<td>Application</td>
<td>Analysis</td>
<td>Synthesis/Evaluate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Recall, Memorized Facts</td>
<td>Understanding of pathophysiology</td>
<td>Applying knowledge of pathophysiology to make a diagnosis</td>
<td>Requires students to be able to make a diagnosis and apply outside information to further analyze a scenario.</td>
<td>Requires students to analyze information and come to a conclusion on what the appropriate diagnostic measure may be, or how the issue may be resolved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Requires ability to practically apply information in a vignette.</td>
<td>Student must be able to make a diagnosis based on pt symptoms. Or with media, come to a conclusion to the causing pathophysiology.</td>
<td>Student must be able to properly make a diagnosis and determine the next step to take to confirm diagnosis or how to prevent pathology from worsening.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pure memorization, may involve identification of media, or regurgitation of factual information</td>
<td>Requires students to understand basic pathophysiology, may ask to explain a process or purpose of a step in a process.</td>
<td>In cases of media, may require ability to explain the function of a displayed item.</td>
<td>Will often require assumptions or “most likely” diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Requires ability to practically apply information in a vignette.</td>
<td>Student must be able to make a diagnosis based on pt symptoms. Or with media, come to a conclusion to the causing pathophysiology.</td>
<td>Student must be able to properly make a diagnosis and determine the next step to take to confirm diagnosis or how to prevent pathology from worsening.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Requires ability to practically apply information in a vignette.</td>
<td>Student must be able to properly make a diagnosis and determine the next step to take to confirm diagnosis or how to prevent pathology from worsening.</td>
<td>Student must be able to properly make a diagnosis and determine the next step to take to confirm diagnosis or how to prevent pathology from worsening.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Adoption of Bloom’s Taxonomy of graduate level pathology class
- Similarities to BTHT
 - 5 Levels reflecting combination of Bloom’s Taxonomy
 - Relevant Domain-specific information as well as characteristics of the relevant MCQs
- Differences
 - theoretical challenge of developing types of pathological knowledge assessed

Coco M, Kragel P, Boyer, PJ. Bloom’s Taxonomy Pathology Tool. 2019
Popular question banks and board questions often involve 2nd or 3rd order questions that involve answering multiple intermediary questions and may or may not be overall high order.

Ex) Question Components
- Application of given knowledge
- Integration of basic remembered knowledge of which ions flow out of a cell

Molecular biologists perform a series of experiments to characterize the electrophysiologic properties of human muscle cells. The resting membrane potential for an isolated muscle cell is determined to be -70 mV. The equilibrium potentials for important ions under normal physiologic conditions are as follows:

- $E_{\text{Na}} = +60 \text{ mV}$
- $E_{\text{K}} = -90 \text{ mV}$
- $E_{\text{Cl}} = -75 \text{ mV}$
- $E_{\text{Ca}} = +125 \text{ mV}$
- $E_{\text{H}} = 0 \text{ mV}$

If physiologic conditions are maintained, which of the following ions would most likely flow out of the cell after opening of their respective ion channels?

- A. Magnesium and calcium [1%]
- B. Magnesium and chloride [1%]
- C. Potassium and chloride [42%] (Correct Answer)
- D. Potassium only [42%]
- E. Sodium and calcium [12%]

(UWorld Question Bank 2020. Question D1388)
• **Breadth** = the extent to which relevant teaching has been retained
 • Tied to the number of cognitive jumps a question may require

• **Depth** = the strength of the test taker at manipulating that knowledge.
 • Tied to question stem and the incorporation of Bloom’s Taxonomy

• **Grid Design**
 • Concentric circles represent layers of bloom’s taxonomy, largely tied to question stems and knowledge depth
 • Linear axes represent commonly tested pieces of information and knowledge breadth
MCQ Development: Example: Diabetes

1 “step” MCQ

Figure 1: Given disease name, what are the risk factors? (1 step)

Ex) What are the risk factors for diabetes?

2 “step” MCQ

Figure 2: Given symptoms of a disease, what are the risk factors? (two steps)

Ex) A 27M presents with frequent urination at night, what are the risk factors for his condition?

3 “step” MCQ

Figure 3: Given symptoms of a disease, how does the first line treatment work? (three steps)

Ex) A 27M presents with frequent urination and fatigue, how does the first line treatment work?

4 “step” MCQ

Figure 4: Given symptoms of a disease, would this new diagnostic test (with mechanism of action) be appropriate to diagnosis him (three steps)

Ex) A patient with fatigue and polyuria is tested using a new diagnostic test. When could this test report a false negative diagnosis?
Analysis of MS2 Pathology Endocrine Quiz 2

- MCQs with >1 cognitive step compared to counterparts
 - increased difficulty (lower proportion correct)
 - increased discrimination index
 - increased avg completion time

- MCQs in Bloom’s 2nd Order compared to 1st order counterparts
 - increased question difficulty
 - increased discrimination index
 - decreased average completion time

<table>
<thead>
<tr>
<th>Question Category Subtypes</th>
<th>Proportion Correct</th>
<th>Discrimination Index</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cognitive "Step"</td>
<td>0.83</td>
<td>0.39</td>
<td>80</td>
</tr>
<tr>
<td>2 Cognitive "Steps"</td>
<td>0.73</td>
<td>0.45</td>
<td>92</td>
</tr>
<tr>
<td>Bloom’s 1st Order (Recognition)</td>
<td>0.85</td>
<td>0.37</td>
<td>84</td>
</tr>
<tr>
<td>Bloom’s 2nd Order (Comprehension)</td>
<td>0.35</td>
<td>0.75</td>
<td>80</td>
</tr>
</tbody>
</table>
• **Conclusions**
 - Our conceptual model allows us to understand the components of a multiple-choice question to optimally write “lower-order” to “higher-order” assessment questions.
 - Allows for generation of questions as we develop
 - Formative assessments
 - Summative assessments
 - Preliminary results are encouraging in the use of dividing analysis between question breadth and depth.
 - Future research will include evaluation of questions based on their ability to stratify students within the upper, median, and lower quartiles of the class.
 - Limitations in sample size prevent stronger conclusions from being drawn.

• **Next Steps**
 - Expand analysis to additional endocrine assessments, and later other organ system blocks
 - Institute changes to endocrine assessment materials with goal of increasing discrimination index
 - Evaluate inclusion of irrelevant information into the model and explore how this inclusion affects discrimination index
Acknowledgements

Arthur Samia, M4
Brody School of Medicine

Philip Boyer, M.D., Ph.D.
Department of Pathology and Laboratory Medicine
Brody School of Medicine

Peter Kragel, M.D. - Retired
Department of Pathology and Laboratory Medicine
Brody School of Medicine
References

Questions?