
Improving Patient Outcomes with a Robust Surgical Quality Program

Quality Improvement Symposium March 2, 2016

Elaine Henry, BSN & Danielle Walsh, MD

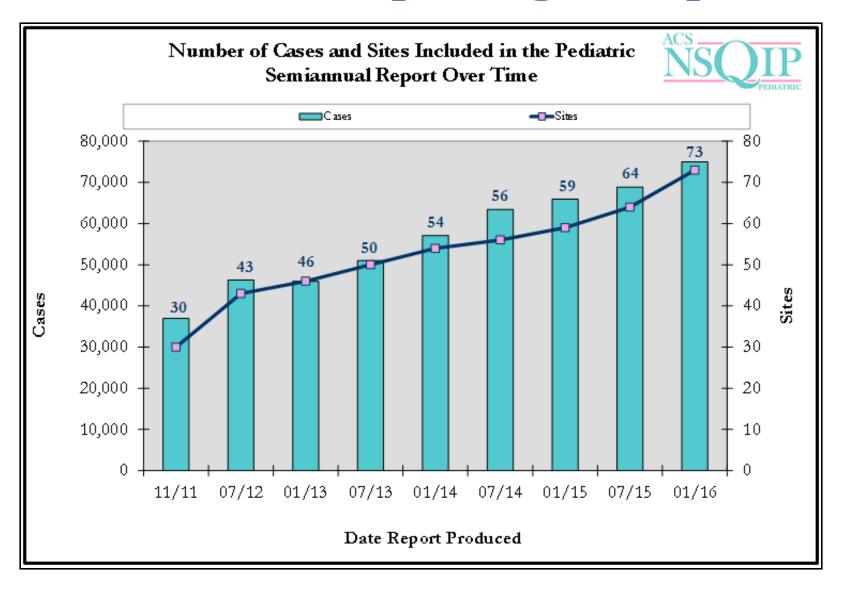
Background

- Pediatric surgery program re−opened July 2010 after 3 ½ years of closure
- Stepwise programmatic growth
 - Extensive staff training, especially bedside nursing
 - Standardization of practice
 - Growth, addition of more complicated services
 - Assessment of quality

Background

- UHC administrative data, retrospective & limited for pediatric surgery
 - Relevant metrics mixed with adult surgery and pediatrics
 - Percent in each too small to evaluate quality
- Prospective databases relevant to pediatric surgery
 - Children's Hospital Association not in use \$\$\$\$
 - P-NSQIP Adult surgery and trauma already using \$\$
 - Pediatric general surgery modules started in 2011 and pediatric trauma 2014
- Funding approved via Board and CMN
 - * Began October 2014

American College of Surgeons National Surgical Quality Improvement Program


- Data-driven, risk-adjusted, outcomes-based program
- * Uses clinical data, not administrative data
- Assesses 126+ variables
- Outcomes assessed 30 days after index surgery
- Standardized and validated data definitions

NSQIP QUALITY IMPROVEMENT PROCESS

- Train a multidisciplinary team
 - SCR trained and certified data collector
 - Surgical Champion
- * Hospitals abstract data.
- * Analyzed by ACS NSQIP, risk stratified.
- Reported with ranking every 6 months.
- Hospitals act on their data.

NSQIP Participating Hospitals

DATA REPORTS

- Models for all surgery types:
 - Mortality
 - Morbidity
 - * SSI
 - * Vein Thrombosis
 - Reintubation
 - Cardiac
 - Pneumonia
 - * UTI

- Models for subspecialties
 - General surgery
 - Orthopedic
 - Otolaryngology (ENT),
 - Plastic
 - Urology
 - Neurosurgery

Appendectomy Baseline Data October 2014-May 2016

	Vidant Pre Protocol		All Cases: Comparison	
Number of Cases	46		4,328	
Post-op Occurrence Rate		15.2%		4.2%
I. Outcome				
Readmission for any reason within 30 day	s?	17.4%		4.0%
Unplanned return to OR, within 30 days?		4.3%		1.2%
Median Hospital LOS, Days (IQR)	1.5	1	1	2
Avg Duration of Operation, Minutes	52	±23.4	46	±33.1
II. Cases With Post-Op Occurrences				
Cases with 0 Occurrences	39	84.8%	4,146	95.8%
Cases with 1 Occurrence	5	10.9%	166	3.8%
Cases with 2 Occurrences	2	4.3%	16	0.4%
Mean # of Occurrences [3]	1.3	± 0.5	1.1	±0.3
Cases With Wound Occurrences				
Superficial Incisional SSI	0	0.0%	39	0.9%
Deep Incisional SSI	0	0.0%	4	0.1%
Organ/Space SSI	6	13.0%	115	2.7%
Wound Disruption	0	0.0%	0	0.0%

Higher complication rates and readmission rates, largely due to intra-abdominal abscesses.

Appendicitis Protocol

Literature Review, Interdisciplinary Team Consensus

Standardization of

- Evaluation
 - * Labs
 - Imaging
- Operative Procedure
- Antibiotics
 - Type
 - Duration
- Discharge Criteria

Post Protocol Data

	Vidant Pro	e Protocol	Vidant Po	ost Protocol	All Cases: C	omparison	
Number of Cases	46		51		4,806		
Post-op Occurrence Rate		15.2%		11.8%) (5.0%	Improved, still outlier
I. Outcome							
Readmission for any reason within 30 days?		17.4%		7.8%		3.7%	Improved, still outlier
Unplanned return to OR, within 30 days?		4.3%		0.0%		0.9%	Improved, meet standard
Median Hospital LOS, Days (IQR)	1.5	1	1	1	1	2	Improved, meet standard
Avg Duration of Operation, Minutes	52	±23.4	52	±16.5	46	±30.3	
II. Cases With Post-Op Occurrences							
Cases with 0 Occurrences	39	84.8%	45	88.2%	4,568	95.0%	
Cases with 1 Occurrence	5	10.9%	5	9.8%	211	4.4%	Improved, still outlier
Cases with 2 Occurrences	2	4.3%	1	2.0%	27	0.6%	Improved, still outlier
Mean # of Occurrences [3]	1.3	±0.5	1.2	±0.4	1.1	±0.3	Improved, meet standard
Cases With Wound Occurrences			_				
Superficial Incisional SSI	0	0.0%	2	3.9%	47	1.0%	,
Deep Incisional SSI	0	0.0%	0	0.0%	11		
Organ/Space SSI	6	13.0%) 4	7.8%	138	2.9%	Improved, still outlier

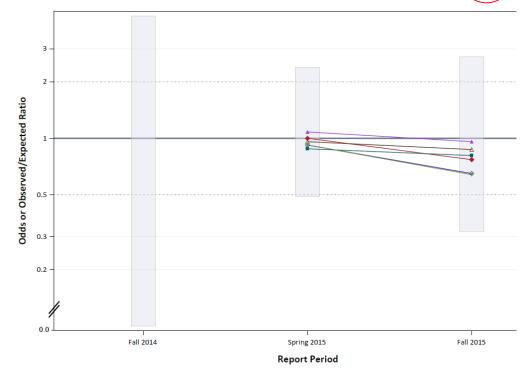
Decreased complications, readmissions, abscess rate. Still more to do....

Appendicitis Next Steps

- Individual case reviews
 - We are more likely to operate on perforated appendicitis, rather than manage with antibiotics non-operatively.
 - We are imaging for a post op abscess earlier. Others recommend no imaging before POD 7.

Act

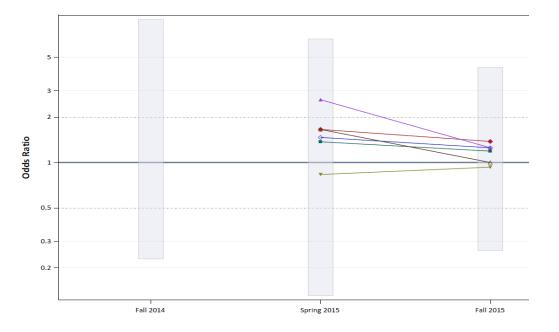
Study


Plan

Do

Revision of protocol.

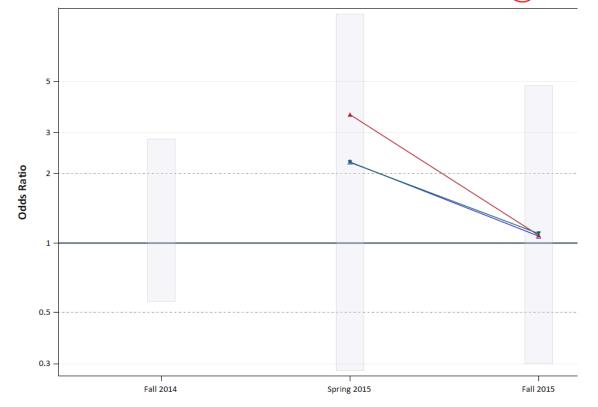
P-TQIP Data - Mortality


Risk Adjusted Mortality								
	Fall 2014 Report				Fall 2015 Report			
	Cohort N	Observed %	Predicted %	/Decile	Cohort N	Observed %	Predicted %	/Decile
All	558	1.6	1.6	6	575	1.6	1.8	2
Ages 0-13	329	1.8	1.7	7	359	1.6	1.7	3
Ages 14-18	229	1.3	1.4	4	216	1.9	2.2	2
TBI	33	24.2	22.3	7	37	21.6	27.7	1
TBI Age 0-13	18	27.8	22	9	22	22.7	25.6	3
TBI Age 14- 18	15	20	20.8	4	15	20	24.6	2

- Pediatric Surgery
 assumed care of trauma
 patients <15 each AM.
- Hiring of a dedicated pediatric neurosurgeon.
- Marked decrease in mortality, especially in TBI age 0-13.

P-TQIP Data - Complications

Risk Adjusted Complications								
		Fall 2014	_	•	Fall 2015 Report			
		Observed				Observed	Predicted	/
	Cohort N	%	Predicted %	₀∕ Decile	Cohort N	%	%	/ Decile \
All	558	2.4	2.2	8	575	2.3	2.2	7
Ages 0-13	329	1.8	1.6	9	359	1.7	1.5	7
Ages 14-18	229	3.1	2.8	7	216	3.3	3.1	7
TBI	33	25.9	23.4	9	37	17.2	17.2	5
TBI Age 0-13	18	26.7	20	9	22	17.6	15	7
TBI Age 14- 18	15	25	24.9	6	16.7	19.5	24.6	4


- Decreased complication rates, especially in TBI.
- Still room for decreasing complications further.
- Identify areas of opportunity.

Complication Drill Down

- Majority of complications pneumonia in PICU patients, especially with TBI.
- Markedly higher ICU LOS
 - Related to longer duration of ventilation
 - Related to deeper/longer sedation
- Collaborate with Dr. LeDoux PICU
 - Revision of sedation protocols
 - Twice a day evaluate for extubation
 - Creation of non-ICU status in ICU

P-TQIP Data - Pneumonia

Risk Adjusted Pneumonia								
	Fall 2014 Report					Fall 2015	5 Report	
		Observed	Predicted			Observed	Predicted	
	Cohort N	%	%	/Decile \	Cohort N	%	%	Decile
TBI	27	22.2	19.1	8	29	10.3	10	6
TBI Age 0-13	15	20	12.9	9	17	5.9	5.4	6
TBI Age 14-				\ /				\
18	12	25	22.2	8	12	16.7	13.2	8

- Marked decrease in pneumonias by all centers.
- We improved faster than most centers.

P-TQUIP Data — ICU Utilization

Resource Uti	lization TBI			
Cohort	Group	Median Duration of Ventillation	Median ICU LOS	Median LOS
All	All Hospitals	3	5	9
	Vidant 2014	6	11	11
	Vidant 2015	3.5	5	8
Ages 0-13	All Hospitals	3	5	9
	Vidant 2014	5.5	11	11
	Vidant 2015	4	5	8
Ages 14-18	All Hospitals	4	6	10
	Vidant 2014	8	11	11
	Vidant 2015	3	6.5	9

- Decrease Duration of Ventilation2.5 days
- Decrease ICU LOS 6 days
- Decrease Total LOS 3 days

Really rough savings for just decreased LOS in PICU

\$666,000

By DRG, age <18, with assumptions that LOS transitioned to floor, PICU day cost \$6000 Decreased LOS ICU – Decreased Total LOS = 3 days, multiplied by 37 patients

Lessons Learned in QI Process

- When people trust the data, they are more willing to make a change.
- A team with each member focused on their area of expertise can accomplish more, faster.

Collaborative Team Members

Elaine Henry, BSN, RNC-NIC, VMC QNS II, NSQIP Surgical Case Reviewer Laurie Etheridge, BSN, RN, VMC QNS II, NSQIP Surgical Case Reviewer Danielle Walsh, MD- Dir, Surgical Quality JCMCH David Rodeberg, MD- Chief of Surgery, JCMCH Shannon Longshore, MD - Dir, Ped Trauma JCMCH Melinda Edwards, MBA – Trauma Registrar Matt LeDoux, MD - PICU Director