INTRODUCTION

Direct electrical stimulation (DES) has become a standard treatment for a multitude of neurological diseases including Parkinson’s disease and epilepsy.

Yet, we only have a rudimentary understanding of the mechanistic effects of DES on single cortical neurons in the human brain. It has been postulated that DES activates excitatory (E) cells followed by engagement of inhibitory (I) neurons. This is supported by in vitro and ex vivo research in different animal models but has not been verified through in vivo investigations in humans.

HYPOTHESIS

We hypothesize that direct electrical stimulation of brain regions will induce the activity of single cells to split into early (excitatory activation) and late (inhibitory activation) phases.

MATERIALS & METHODS

Using microelectrodes during intraoperative neurosurgical resection and mapping (1-3), we applied DES to examine single unit activity and local circuit responses in human lateral prefrontal and temporal cortices (N=11).

Separately, in the Epilepsy Monitoring Unit (EMU), we examined neural responses from microelectrodes implanted semi-chronically (defined as <29 days) in patients (N=8).

We examined excitatory or inhibitory cell-type dynamics from extracellular recordings and the relationship between stimulation intensity, distance, and the E-I-I sequence response.

RESULTS

1. Acute Intraoperative Recordings in the OR

- DeepLabCut [4, 5], computer vision software which uses deep learning for tracking, was used to track the stimulation location relative to the PEDOT-PSS electrode.
- We were able to match the stimulating electrode position relative to the ongoing recording through time.

2. Single units during and after acute DES?

- Single units as represented by different colors is a different single cell with the overlaid waveforms indicating these waveforms repeat through time at the same locations during stable microelectrode recordings.
- We found, across patients, stimulation (as indicated by the red bar below the graph) induced increased single unit activity in the LFP.
- These waves could represent short burst of excitation (E) or short burst of inhibition (I) sequence response.

3. Evidence of E vs. I stimulation sequence in semi-chronic DES recordings

- Individual cells (units) have different response profiles in response to stimulation.
- Though, on the level of the population (18 cells) the stimulation induced longer lasting (2 second) inhibition.

- Using another semi-chronic recording (micromacro electrodes), stimulation induced a short burst of excitation (spiking) along with local field potential (LFP) changes.
- Spiking only occurred at 4 mA current, but not at 1 or 2 mA, indicating a threshold needed to be reached.

4. Neural Oscillation during and after DES

- In the LFP, we observed propagated waves across the microelectrodes seconds after stimulation.
- Mapping the stimulation location to these recordings, we found that these waves (indicated by the arrow heads) would arrive sooner when the stimulation site was closer to the recording electrode.
- These waves could represent inhibitory waves across the electrode.

DISCUSSION

The observed neuronal dynamics supports the hypothesis that DES induces both early (excitatory activation) and late (inhibitory activation) changes in SUA. Through this deeper understanding, we can design more focal, targeted, and informed stimulation approaches targeting specific neuronal cell types.

This strategy may lead to more precise and tailored therapeutic applications of electrical stimulation for an array of neurological disorders.

REFERENCES


ACKNOWLEDGEMENTS

- The Brody School of Medicine, Summer Scholars Research Program.
- This work was supported through the Massachusetts General Hospital, Center for Diversity and Inclusion.
- We are grateful to the participants in the study for their time and help in this process as well as the clinical team in helping gather these data. Further, we thank Dr. Yingling Chou, Jessica Chang, Daniel Soper and Kyle Pellerin.