INTRODUCTION

- The national average from dying from a stroke is 37.2% but in Eastern North Carolina the risk of dying from a stroke is greater than 50%.
- In recent years protocols have been developed in many emergency departments to improve response time, improve emergent stroke recognition, and provide more streamlined care, this is commonly referred to as a “code stroke” upon presentation to the emergency department.
- This presents a massive financial cost on both patients and health-care systems.
- In this retrospective, cross-sectional, observational analysis we studied adult patients that present to Vidant Medical Center Emergency Department with a code stroke activation between 1/1/2015 and 12/31/2019.

HYPOTHESIS

We hypothesized, that by studying code stroke activations and outcomes in the ED, that we would be able to identify predictor variables indicative of a code stroke activation for a true stroke diagnosis.

NIH Stroke Scale

Of the patients who met inclusion criteria, many variables and values were collected from each encounter for further analysis including:
- Demographics: age, sex, race, ethnicity, insurance status
- Times: door to CT, door to TPA, symptom onset, length of stay in the hospital, length of stay in the ICU
- Medical Histories Of: stroke, liver disease, end stage renal disease, diabetes, atrial fibrillation, sedentary lifestyle, cancer, dyslipidemia, hypertension, clotting disorder, patent foramen ovale
- Social Histories Of: cocaine use, IV drug use, smoking
- Medication Histories: anticoagulants, antplatelets, oral contraceptive pills, hormones, chemotherapeutics, insulin
- Diagnostics: CT results, CTA results, CT Perfusion results, MRI results, stroke panel values, vital signs
- Interventions & Outcomes: tPA administration, thrombectomy performed, cranial decompression performed, final outcome, ED diagnosis, discharge diagnosis
- Scores: Initial NIHSS by Emergency Department & Stroke Team, NIHSS at discharge, mRS at discharge

The necessary sample size for this study was calculated to be 341 using STATA®14 assuming an alpha of 0.05 and a power of 0.9.

A logistical regression model will be used to determine an NIH stroke scale level as well as identify variables and values that are predictive of a stroke.

- Thus far, we have successfully completed review of 1283 patient charts. 339 of these charts were activated code strokes and thus were our target population.

Methods and Data Collection

Figure 1: Hemorrhagic stroke. Arrows indicate areas affected by this type of stroke. Lighter areas show the bleeding from the stroke.

Figure 2: Ischemic stroke. The arrows indicate the affected parts of the brain. Darker areas show how this has impacted the brain.

Figure 3: Data input tool used in Microsoft Excel. Each variable was assigned number values and transposed into data sheet to be used for statistical processing.

Discussion and Observations

- Although still waiting for data collection completion before beginning statistical analysis, several trends have been identified in the data.
 - It will be of interest to see if there is a statistical significance to these trends.
- Our Major question for the study is how predictive is the National Institute of Health’s Stroke Scale (NIHSS) in determining whether a patient is having a stroke (and thus, a ‘code stroke’ needs to be called in the ED).
- On visual analysis, it appears that a surprisingly large population of patient’s present to the ED outside of the IPA window.
 - Being outside of the IPA window has implications in the treatment plan and prognosis if the patient is having an ischemic stroke.
- The most common diagnosis for patients who did not actually have a stroke (Were a code stroke, but pt. did not actually have a stroke) was a Transient Ischemic Attack (TIA).
- As expected, many patients that presented as code-stroke to the ED had a medical history with any combination of: Diabetes Mellitus, Hypertension, Atrial Fibillation, and smoking history.
 - It will be of interest to see if having a certain number of chronic medical conditions is a good indicator of an actual stroke.

NEXT STEPS

Once we complete data collection, which we are expecting to complete as quickly as possible (within 5-6 weeks), we will compile all the data and present it for statistical analysis.
- We will be working with a statistician to analyze the data via a linear regression.
- First, as mentioned prior, we will analyze whether the NIHSS is a good predictive tool for determining if a patient is having a stroke or not.
 Following data analysis this poster will be updated with our data*.

REFERENCES

ACKNOWLEDGEMENTS

Funding provided by the Summer Scholars Research Program at the Brody School of Medicine. Special Thanks to Dr. Nicholas Russell for the creation of data collection tool, along with Allison Mainhart, Dr. Cassandra Bradby, and Dr. Kori Brewer for their mentorship and guidance.