Using a 3D-Printed Pterygopalatine Fossa Model to Enhance Student Learning in Medical Gross Anatomy Taha Lodhi

> BRODY SCHOOL OF MEDICINE 8th Annual Medical Education Day

Contact Information: lodhit21@students.ecu.edu

Introduction

- The pterygopalatine fossa is a complex space in the skull base
- Contains:
 - Maxillary artery (terminal branches)
 - Maxillary division of the trigeminal nerve
 - Pterygopalatine ganglion
- Poorly visualized in cadaveric dissection

ECU BRODY SCHOOL OF MEDICINE

Introduction

"The infraorbital and zygomatic nerves pass <u>anteriorly</u> through the infraorbital fissure; the **greater and lesser palatine nerves** pass <u>inferiorly</u> through the greater and lesser palatine canals..."

BSOM M1 Anatomy Course Pack,

Used with permission from Dr. Alex Meredith, Virginia Commonwealth University School of Medicine

• Target

 Education project for first-year medical students enrolled in gross anatomy at the Brody School of Medicine (BSOM)

Study Design

Intervention

- 3D-printed model of the pterygopalatine fossa reconstructed from CT scan
- Accessed during voluntary review sessions, with 3D model as a supplement

Outcome measure

- Pre- and post-session assessment scores
- Post-session survey
- BSOM M1 Medical Gross Anatomy assessments (course-level)

Developing a Model using a CT Scan

Selected pixels indicate manual segmentation used for 3D rendering

3D Rendering of Selected Pixels

Anterior View

Posterior View

Model Creation: Acquire CT, create model using <i>3DSlicer</i> , label model for clarity	Recruitment: Email, use BSOM Class of 2026 Facebook page and GroupMe	Session: Voluntary, 30- minute sessions with access to labeled model, pre- and post- session quiz	Post-session: Email post- session survey	Data analysis	
Spring 2022	Fall 2022 (early)	Fall 2022 (late)	Post-Session	Winter 2022	

Timeline

- Increase model complexity
 - "Hollowed out" model vs. negative-space model
 - Show nerves and vasculature passing through
- Develop 3D models of other complete anatomical structures from radiological images