Cardiovascular Pathology Education Optimization and Improvement: A Critical Review of Topics and Teaching Modalities

Andrew T. Ray[#], William H. McAllister[#], Connor L. Pratson[#], Connor J. Karr[#], Philip J. Boyer, M.D., Ph.D.^{*}, Andrea T. Deyrup, M.D., Ph.D. [^], Joshua R. Butler[~], William W. Godwin@, Karen L. Kelly, M.D.^{*}

*Department of Pathology and Laboratory Medicine, #Brody School of Medicine, ~Department of Engineering, and @Innovation and Design Laboratory, East Carolina University, Greenville, North Carolina and ^Department of Pathology, Duke University, Raleigh, North Carolina

Rationale / Need

- Pathology is a <u>foundation topic</u> in basic science undergraduate medical education eduction:
 - It provides a <u>critical infrastructure</u> for subsequent medical eduction
 - It is <u>heavily tested</u> on the National Board of Medical Examiners <u>United State Medical Licensing Step 1</u>
 Examination

CONTENT DESCRIPTION and GENERAL INFORMATION

Step 1

Discipline Content on USMLE Step 1

This booklet was updated February 2019.

Copyright © 2019 by the Federation of State Medical Boards of the United States, Inc. (FSMB), and the National Board of Medical Examiners® (NBME®). All rights reserved. The United States Medical Licensing Examination (USMLE®) is a joint program of the FSMB and the NBME.

Table 4: Step 1 Discipline Specifications*

Discipline	Range, %*
Pathology	45–52
* Physiology	26–34
 Pharmacology 	16–23
Biochemistry & Nutrition	14–24
Microbiology & Immunology	15–22
Gross Anatomy & Embryology	11–15
 Histology & Cell Biology 	9–13
Behavioral Sciences	8–12
* Genetics	5–9

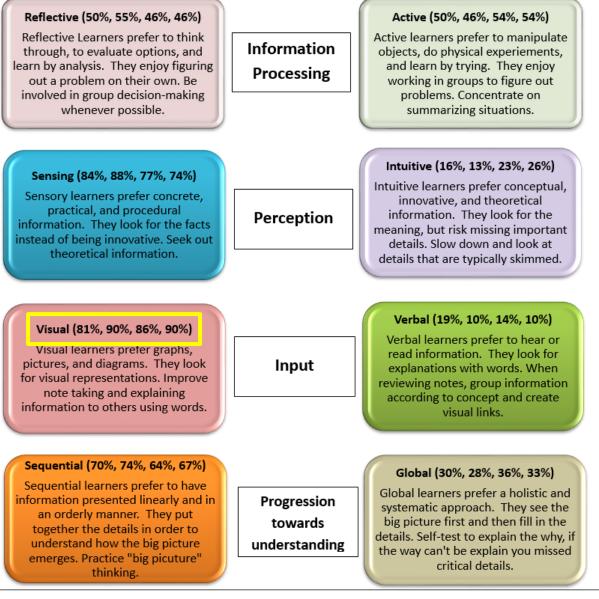
*Percentages are subject to change at any time. See the USMLE website (<u>www.usmle.org</u>) for the most up-to-date information.

(usmle.org/pdfs/step-1/content_step1.pdf)

Rationale / Need

- With the introduction of a <u>revised, organ system-focused</u> <u>curriculum</u> at the Brody School of Medicine, it is appropriate and timely to:
 - Assess what is being taught in the Pathology course
 - <u>Assess</u> <u>how</u> is content being taught
- Ideal
 - Make changes based on <u>data</u> rather than opinion

Preliminary Steps


- <u>Second-year medical students</u> enrolled in the pathology course were <u>surveyed</u> regarding laboratory sessions.
- <u>Collaboration</u> with the <u>Duke University Pathology Course</u> <u>Director</u> was undertaken.
- Literature and Google searches were undertaken to identify resources detailing validated <u>topics</u> and <u>teaching</u> <u>modalities</u> for the cardiovascular component of undergraduate medical pathology courses.
- Brody <u>learning objectives</u> were compared to those deployed at Duke and those cited in widely-used resources.

→ implementation of a <u>Congenital Heart Disease Laboratory</u> in the M2 Pathology Course

Index of Learning Styles: Brody 2018 - 2021

- Very similar from year-to-year
- The learning preferences of a majority of Brody Students include elements which are:
 - Sensory
 - Visual
 - Sequential

(Assessment Tool: North Carolina State University: www4.ncsu.edu/unity/lockers/ users/f/felder/public/ ILSpage.html)

Index of Learning Styles Classes of 2018, 2019, 2020 & 2021

CV Session Construct: Current

9 Lecture Sessions:

Formative Assessment: All sessions Small Groups of Students: Groups include case-based, poll-style questions (TurningPoint, TurningTechnologies.com)

- Attendance: Optional
 - Attendance Bonus Points: 70% attendance

2 Laboratory Sessions:

respond and review case-based questions reviewed

- **Gross Organs Normal and** Abnormal: Demonstration and discussion
- **Attendance**: \geq 50% of total sessions required

Course Survey: 2017

Congenital heart disease specimens had not been demonstrated in the past

- Time constraints \rightarrow 20 participants
- Small size of specimens
- Since the <u>specimens</u> were <u>so small</u>, it would have been nice to have a <u>smaller group</u> that allowed us to get closer. It was a lot of blue and pink strings going in and out of places I couldn't quite see.
- These defects in general were just hard for me to picture, so seeing a specimen and a <u>3-D model</u> will <u>help</u>
 <u>me better conceptualize these defects</u> and remember the effects they have on blood flow.

Methods and Materials

- A new, optional <u>Congenital Heart Disease Laboratory</u> session was implemented based on the previous year's feedback utilizing <u>3-D model constructs</u> of various congenital heart pathologies based on prior survey data.
 - <u>Survey</u>: Students participating in the Congenital Heart Disease Laboratory session were polled regarding:
 - <u>Usefulness</u> of the congenital heart lab relative to other pathology lab sessions
 - <u>Usefulness of 3-D printed models</u> in student understanding of congenital heart defects

3D Printing Models of Congenital Heart Disease Defects

Use of 3D Models in Education

- Limited published use of 3D models in medical education to date
- <u>Pediatric Resident</u>
 <u>congenital heart disease</u>
 <u>session</u>
 - 3D Models vs.
 - Photographs (2D)

• <u>Conclusion</u>:

 Physical 3D models enhance resident education around the topic of tetralogy of Fallot by improving learner satisfaction.

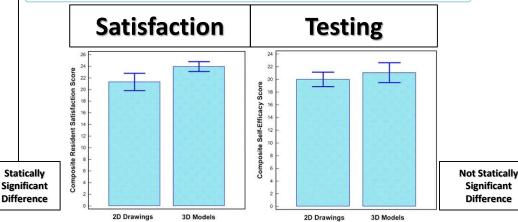
RESEARCH ARTICLE

Open Access

Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease

Yue-Hin Loke^{1*}, Ashraf S. Harahsheh¹, Axel Krieger² and Laura J. Olivieri^{1,2}

Abstract


Background: Congenital heart disease (CHD) is the most common human birth defect, and clinicians need to understand the anatomy to effectively care for patients with CHD. However, standard two-dimensional (2D) display methods do not adequately carry the critical spatial information to reflect CHD anatomy. Three-dimensional (3D) models may be useful in improving the understanding of CHD, without requiring a mastery of cardiac imaging. The study aimed to evaluate the impact of 3D models on how pediatric residents understand and learn about tetralogy of Fallot following a teaching session.

Methods: Pediatric residents rotating through an inpatient Cardiology rotation were recruited. The sessions were randomized into using either conventional 2D drawings of tetralogy of Fallot or physical 3D models printed from 3D cardiac imaging data sets (cardiac MR, CT, and 3D echocardiogram). Knowledge acquisition was measured by comparing pre-session and post-session knowledge test scores. Learner satisfaction and self-efficacy ratings were measured with questionnaires filled out by the residents after the teaching sessions. Comparisons between the test scores, learner satisfaction and self-efficacy questionnaires for the two groups were assessed with paired *t*-test.

Results: Thirty-five pediatric residents enrolled into the study, with no significant differences in background characteristics, including previous clinical exposure to tetralogy of Fallot. The 2D image group (n = 17) and 3D model group (n = 18) demonstrated similar knowledge acquisition in post-test scores. Residents who were taught with 3D models gave a higher composite learner satisfaction scores (P = 0.03). The 3D model group also had higher self-efficacy aggregate scores, but the difference was not statistically significant (P = 0.39).

Conclusion: Physical 3D models enhance resident education around the topic of tetralogy of Fallot by improving learner satisfaction. Future studies should examine the impact of models on teaching CHD that are more complex and elaborate.

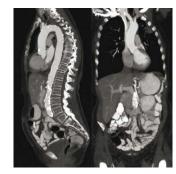
Keywords: Congenital heart disease, 3D printing, Resident education

Innovation and Design Laboratory, East Carolina University

William W. Godwin: Director

Collaboration with ECU College of Engineering Students:

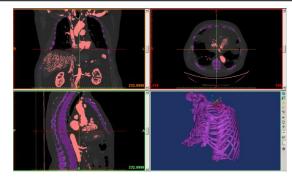
- Kevin C. Nguyen
- Joshua R. Butler



(bwarchitecture.info/about1-c12qf)

Overview: 3D Printing Process

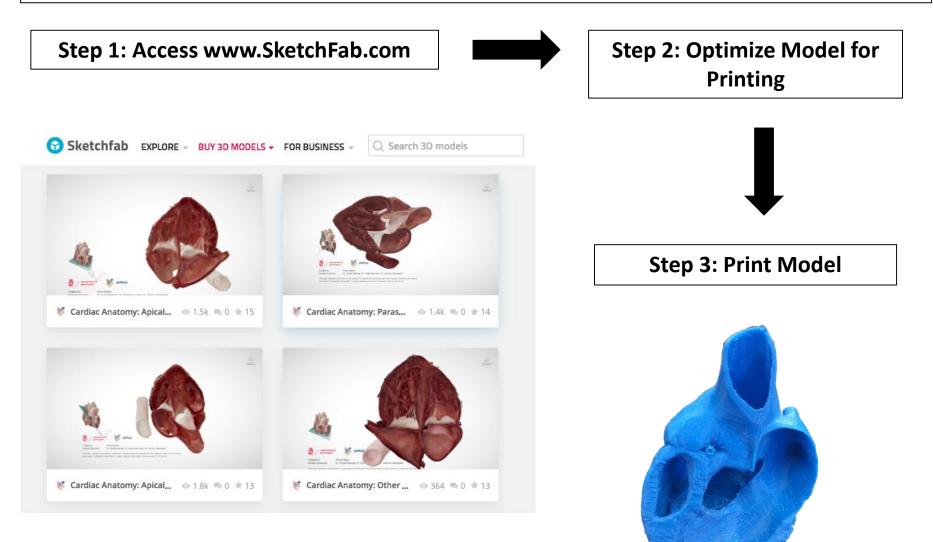
Step 1: Obtain Patient-Specific Images



(doylestownhealth.org/medical-services/medical-imagingradiology/ct-scan)

(3dhubs.com/3d-printers/makerbot-replicator-5th-gen)

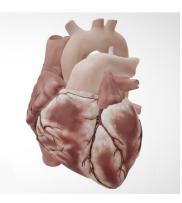
Step 2: Create 3D Model Using Imaging Processing Software



Step 3: Optimize Model for Printing

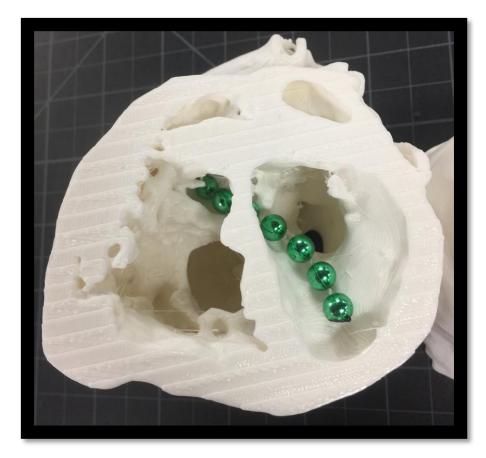
Simplified 3D Printing Process

E-Learning University Medical Center Groningen


BIO

That's me, Anna Sieben. I am a medical artist with professional experience in creating visual and interactive resources to make medicine accessible, comprehensible and engaging. As a medical illustrator with a background in medicine, I love to work where science and art meet, combining two passions of mine: the art of medicine and medical art.

RECENT PROJECTS

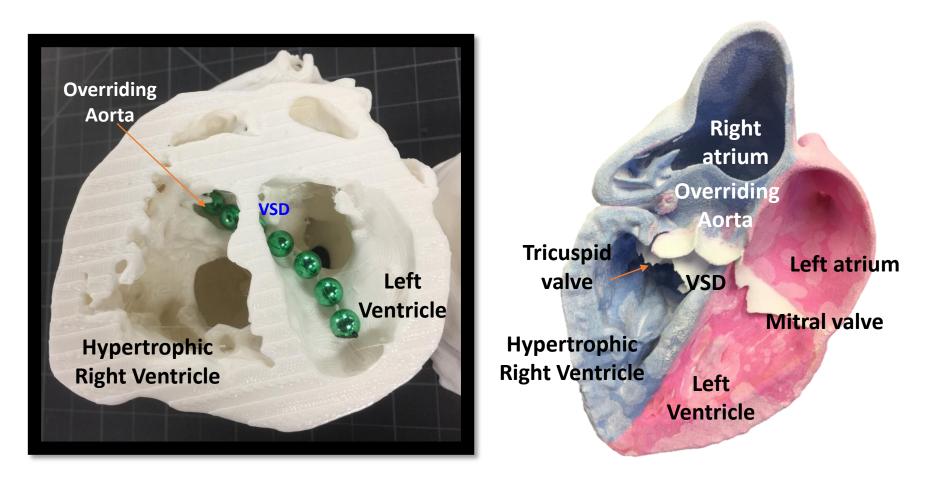

VISUALISING HEART DISEASE

3D SCAN DENTISTRY MODELS

ECHOCARDIOGRAPHY AND 3D ANATOMY

Check out her website at http://www.annasieben.com

Tetralogy of Fallot: Medical Art vs Patient Specific Design

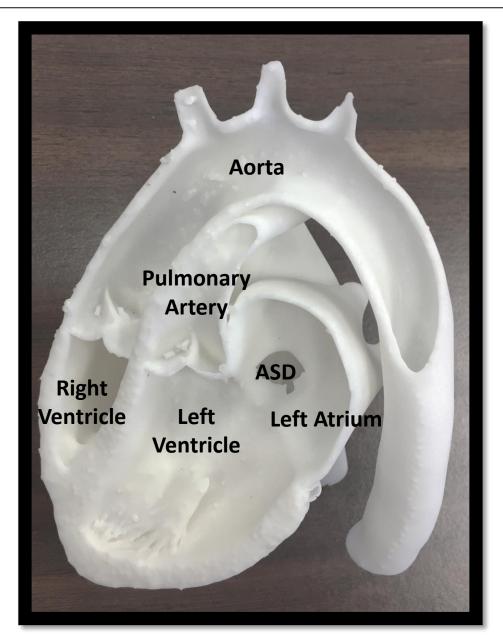


Tetralogy of Fallot: Medical Art vs Patient Specific Design

Patient Specific

Medical Art

Course Survey: 2017


Most Useful Congenital Heart Disease Specimens:

Specimen	CV Lab Attendees
Tetrology of Fallot	60% (n=12)
Transposition of the Great Vessels	50% (n=10)
Patent Foramen Ovale	40% (n=8)
Ventricular Septal Defect	35% (n=7)
Coarctation of the Aorta	30% (n=6)
Atrial Septal Defect	20% (n=4)
Patent Ductus Arteriosus	20% (n=4)
Persistent Truncus Arteriosus	10% (n=2)
Tricuspid Atresia	5% (n=1)

- Which specimens would most benefit from a <u>3D model</u> for demonstration and evaluation?
 - Tetrology of Fallot 7
 Transposition of Great Vessels 3
 Truncus Arteriosus 3
 Coarctation of Aorta 1

(Responses: N = 7)

Transposition of the Great Vessels

3D Prints

Fused Deposition Modeling

Stereolithography

Powder Bed Fusion

3D Prints

Fused Deposition Modeling

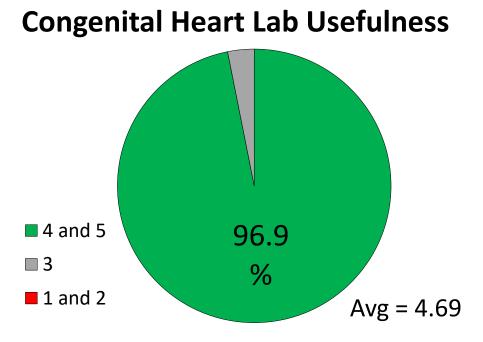
Price Durability Finish Color Cheap Durable Rough Unicolor

Stereolithography

Expensive Durable Smooth Unicolor

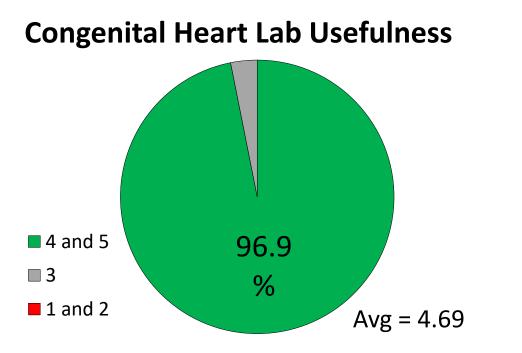
3D Prints

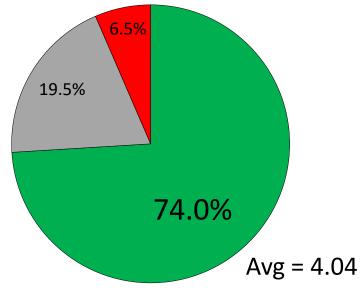
Price Durability Finish Color Cheap Durable Rough Unicolor


Powder Bed Fusion

Moderate Fragile Smooth Multicolor

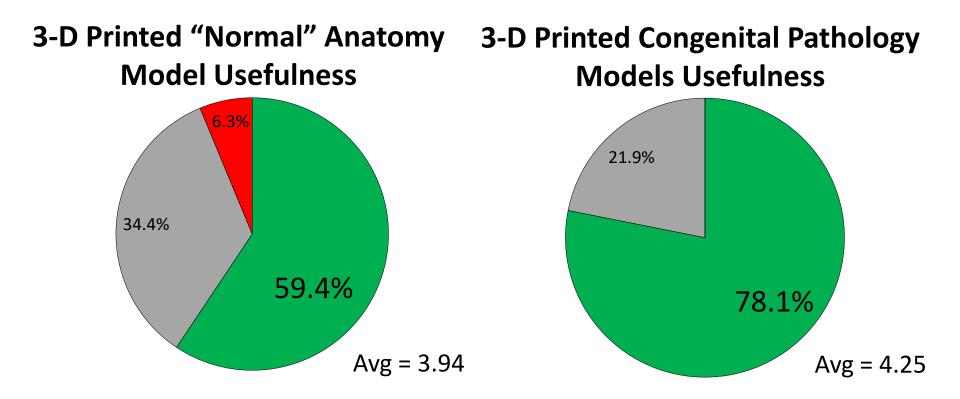
Survey Results from 2021 **Congenital Heart** Lab 2018


Utility of Congenital Heart Pathology Lab

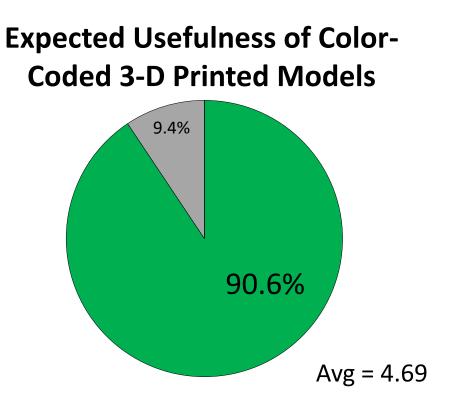

- 1 = Not Useful
- 5 = Very Useful

- Response Rate = 100% (32/32) participants
- Extra Credit Awarded to
 Students who completed the survey
 - Opportunity available to the entire class even if they did not attend congenital heart lab (77/85 total M2 students = 90.5%)
 - Students made aware that names were only collected for extra credit purposes and rest of survey was anonymous
 - Data collected by classmate

Utility of Congenital Heart Pathology Lab

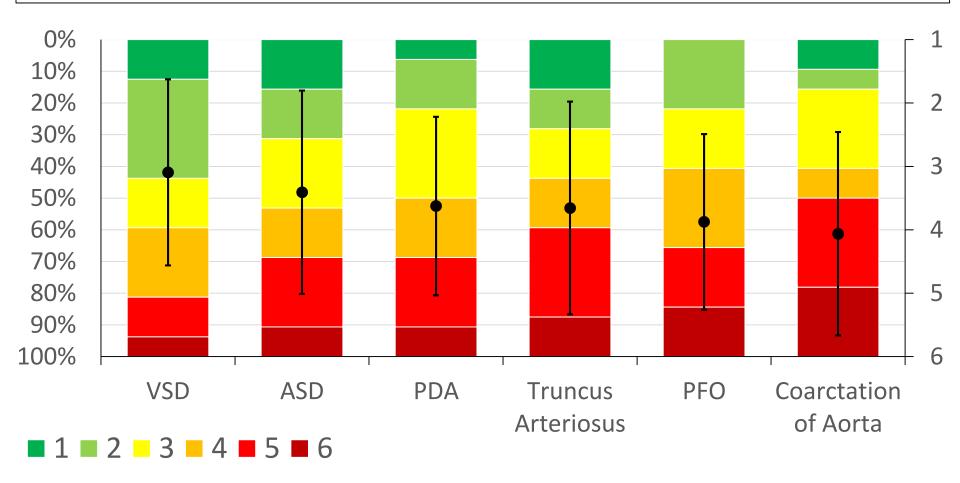


Overall Path Lab Usefulness


- 1 = Not Useful
- 5 = Very Useful

Utility of 3-D Printed Heart Models

- 1 = Not Useful
- 5 = Very Useful


Exploration into Using Color Coded Models

- 1 = Not Useful
- 5 = Very Useful

Most Desired Models for Future Classes

The 6 choices were ranked against one another as priority for being printed as a model with a Ranking of 1 = Highest Priority

• VSD (highest priority by ranking) = 3.1 average ranking

Conclusions

Conclusions

Created multiple 3D heart models

- Normal Neonatal
- Tetralogy of Fallot
- Transposition of the Great Vessels
- Atrioventricular septal defect

Students confirm usefulness of 3D printed cardiac models

• Multicolor models highly desired by students

Optimized the 3D model for medical education

- Artistic design
- Color
- Print method

Future directions for 3D printing

Future Directions and Next Steps

Medical Education in "Basic Science" Coursework

- Manufacture more models
- Create models of more congenital heart pathologies
- Expand student-model interaction

Medical Education in "Clinical" Coursework

Echocardiographic models for clinical learning

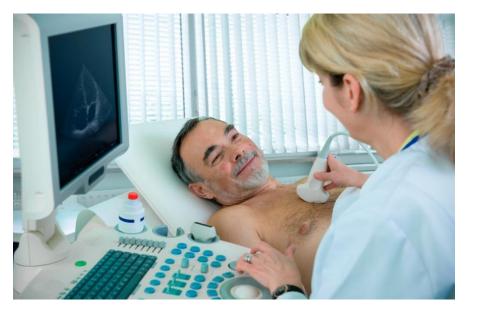
Patient Education

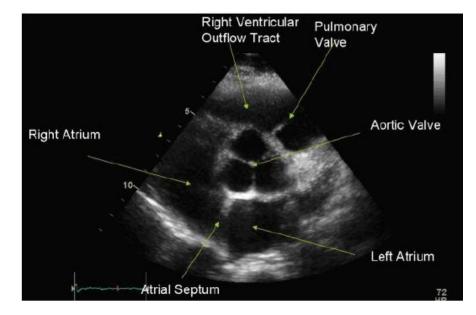
• PFO closure

Surgical Planning

- Rib resection
- Tracheal stenosis

Basic Science Medical Education





Manufacture more models Student-Model interaction Survey Explore different pathology

Clinical Medical Education

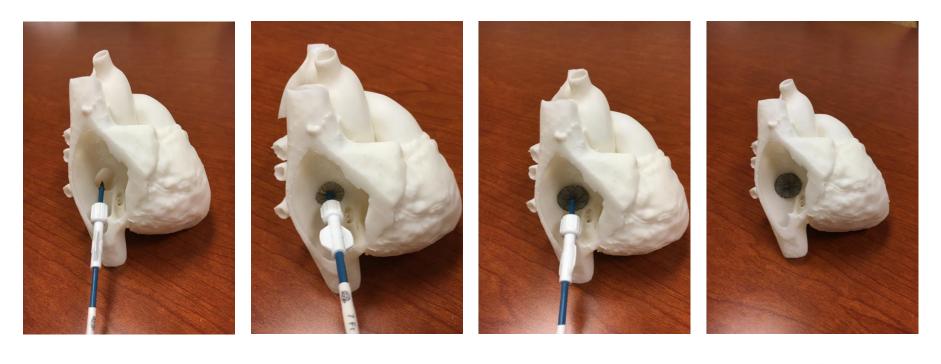
Echocardiography

Medical Education

Future Directions for 3D Printing

Medical Education

Surgical Planning



Patient Education

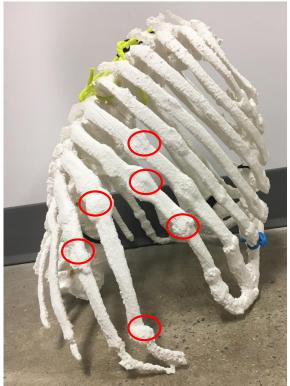
Patient Education

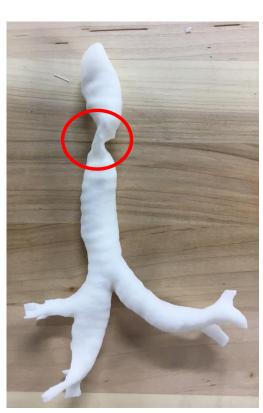
Percutaneous closure of patient foramen ovale

Future Directions for 3D Printing

Medical Education

Surgical Planning


Patient Education



Future Directions for 3D Printing

Surgical Planning

Collaborators / Acknowledgements

Collaborators / Acknowledgements

Brody School of Medicine, East Carolina University	 Connor L. Pratson M3 → M4 Connor J. Karr M4 → Intern 	
Department of Pathology and Laboratory Medicine, East Carolina University	Philip J. Boyer, M.D., Ph.D.Karen L. Kelly, M.D.	
Department of Pathology, Duke University	• Andrea T. Deyrup, M.D., Ph.D.	
Office of Student Development and Academic Counseling, Brody School of Medicine East Carolina University	 Terri N. Edwards 	
Department of Engineering, East Carolina University	Kevin C. NguyenJoshua R. Butler	
Innovation and Design Laboratory, East Carolina University	• William W. Godwin	
E-Learning University Medical Center Groningen	• Anna Sieben	

Need Models? Got Ideas?

Email: rayan16@students.ecu.edu